Apolipoprotein E4 domain interaction occurs in living neuronal cells as determined by fluorescence resonance energy transfer.

نویسندگان

  • Qin Xu
  • Walter J Brecht
  • Karl H Weisgraber
  • Robert W Mahley
  • Yadong Huang
چکیده

Apolipoprotein (apo) E4 is a major risk factor for Alzheimer disease. Although the mechanisms remain to be determined, the detrimental effects of apoE4 in neurobiology must be based on its unique structural and biophysical properties. One such property is domain interaction mediated by a salt bridge between Arg-61 in the N-terminal domain and Glu-255 in the C-terminal domain of apoE4. This interaction, which does not occur in apoE3 or apoE2, causes apoE4 to bind preferentially to certain lipoprotein particles in vitro and in vivo. Here we used fluorescence resonance energy transfer (FRET) to determine whether apoE4 domain interaction occurs in living neuronal cells. Neuro-2a cells were transfected with constructs encoding apoE3 or apoE4 in which yellow fluorescent protein (YFP) was fused to the N terminus, and cyan fluorescent protein (CFP) was fused to the C terminus. To generate a FRET signal that can be detected by spectrum confocal microscopy, the labeled N and C termini must be in close proximity (<100 A). FRET signals occurred in cells transfected with YFP-apoE4-CFP but not in those transfected with YFP-apoE3-CFP, suggesting that the N and C termini of apoE4 are in close proximity in living cells and that those of apoE3 are not. FRET signals did not occur in cells cotransfected with YFP-apoE4 and apoE4-CFP, suggesting that the FRET in YFP-apoE4-CFP-transfected cells was intramolecular. Mutation of Arg-61 to Thr or Glu-255 to Ala in apoE4, which disrupts domain interaction, abolished FRET in Neuro-2a cells, strongly suggesting that the FRET in YFP-apoE4-CFP cells was caused by domain interaction. ApoE4-producing cells secreted less phospholipid than apoE3-producing cells, but after disruption of domain interaction in apoE4, phospholipid secretion increased to the levels seen with apoE3, suggesting that domain interaction decreases the phospholipid-binding capacity of apoE4. Thus, apoE4 domain interaction occurs in living neuronal cells and may be a molecular basis for apoE4-related neurodegeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Study of the N-terminal Domain of Apolipoprotein E on a Mimetic-Lipid Surface

Lipid-protein interactions are ubiquitous to living systems. The protein/lipid interface is extremely important but little is known at this time about the specific interactions at these interfaces. In particular the molecular mechanism of apolipoprotein recruitment to lipoprotein surfaces and its subsequent structural alteration is not well understood. N-terminal domain of human apolipoprotein ...

متن کامل

Loose interaction between glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase revealed by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy in living cells.

Loose interaction between the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK) was visualized in living CHO-K1 cells by fluorescence resonance energy transfer (FRET), using time-domain fluorescence lifetime imaging microscopy. FRET between active tetrameric subunits of GAPDH linked to cerulean or citrine was observed, and this FRET signal was...

متن کامل

Apolipoprotein E: Isoform Specific Differences in Tertiary Structure and Interaction with Amyloid-β in Human Alzheimer Brain

We applied a novel application of FLIM-FRET to in situ measurement and quantification of protein interactions to explore isoform specific differences in Aβ-ApoE interaction and ApoE tertiary conformation in senile plaques in human Alzheimer brain. ApoE3 interacts more closely with Aβ than ApoE4, but a greater proportion of Aβ molecules within plaques are decorated with ApoE4 than ApoE3, lending...

متن کامل

Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy

The interaction of activated epidermal growth factor receptor (EGFR) with the Src homology 2 (SH2) domain of the growth-factor-receptor binding protein Grb2 initiates signaling through Ras and mitogen-activated protein kinase (MAP kinase) [1,2]. Activation of EGFRs by ligand also triggers rapid endocytosis of EGF-receptor complexes. To analyze the spatiotemporal regulation of EGFR-Grb2 interact...

متن کامل

Interaction of the N-terminal domain of apolipoprotein E4 with heparin.

Apolipoprotein E (apoE) is an important lipid-transport protein in human plasma and brain. It has three common isoforms (apoE2, apoE3, and apoE4). ApoE is a major genetic risk factor in heart disease and in neurodegenerative disease, including Alzheimer's disease. The interaction of apoE with heparan sulfate proteoglycans plays an important role in lipoprotein remnant uptake and likely in ather...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 24  شماره 

صفحات  -

تاریخ انتشار 2004